Bélanger, S. \& Beauchamp, A. L. (1996). Inorg. Chem. 35, 78367844.

Bélanger, S. \& Beauchamp, A. L. (1997). Inorg. Chem. 36, 36403647.

Boinnard, D., Cassoux, P., Petrouleas, V., Savariault, J. M. \& Tuchagues, J. P. (1990). Inorg. Chem. 29, 4114-4122.
Chatt, J. \& Rowe, G. A. (1962). J. Chem. Soc. pp. 4019-4033.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Esteruelas, M. E., Lahoz, F. J., Oro, L. A., Oñate, E. \& Ruiz, N. (1994). Inorg. Chem. 33, 787-792.

Fieselmann, B. F., Hendrickson, D. N. \& Stucky, G. D. (1978). Inorg. Chem. 17, 2078-2083.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Fletcher, J. R. \& Skapski, A. C. (1972). J. Chem. Soc. Dalton Trans. pp. 1073-1078.
Fortin, S. \& Beauchamp, A. L. (1998). Inorg. Chim. Acta, 279, 159164.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Crr'st. 22, 384-387.

García, M. P., Lopez, A. M.. Esteruelas, M. A., Lahoz, F. J. \& Oro, L. A. (1990). J. Chem. Soc. Dalion Trans. pp. 3465-3472.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kirchner, C. \& Krebs, B. (1987). Inorg. Chem. 26, 3569-3576.
Lock, C. J. L. \& Turner, G. (1978). Can. J. Chem. 56, 179-188.
Pearson, C. \& Beauchamp, A. L. (1994). Acla Crysı. C50, 42-44.
Rasmussen, P. G., Anderson, J. E., Bailey, O. H., Tamres, M. \& Bayo, J. C. (1986). J. Am. Chem. Soc. 107, 279-281.

Shandles, R., Schlemper, E. O. \& Murmann, R. K. (1971). Inorg. Chem. 10, 2785-2789.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Prograin for the Refinement of Crustal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 521-523
$\mathrm{K}_{2}\left[\mathrm{MoO}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \cdot \mathbf{H}_{2} \mathrm{O}$

Yong-Heng Xing, ${ }^{a}$ Zuo Wang, ${ }^{a}$ Ji-Qing Xu, ${ }^{a *}$
Dong-Mei Li, ${ }^{a}$ Ren-Zhang Wang, ${ }^{a}$ Wei-Ming Bu, ${ }^{b}$
Ling Ye, ${ }^{b}$ Xing Yan, ${ }^{c}$ Yong-Hua Lin ${ }^{c}$ and Heng-Qing Jia ${ }^{c}$
${ }^{a}$ Department of Chemistry, Jilin University, Changchun, Jilin 130023, People's Republic of China, ${ }^{\text {b Key Laboratory for }}$ Supramolecular Structure and Spectroscopy, Jilin University, Changchun, Jilin 130023, People's Republic of China, and
'Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China. E-mail: xjq@mail.jlu.edu.cn

(Received 9 July 1998; accepted 11 November 1998)

Abstract

In the title compound, catena-poly[dipotassium [[(oxal-ato- O, O^{\prime})dioxomolybdate]- μ-oxo] monohydrate], oxalate acts as a bidentate ligand coordinating to each

Mo atom through the two deprotonated carboxylate groups. The coordination polyhedron of molybdenum is distorted octahedral and there are infinite chains in the structure. Principal dimensions are: Mo-O(terminal) 1.560 (3) and 1.739 (3) \AA, Mo-O(bridging) 2.046 (4) and 2.410 (4) \AA, and Mo-O(carboxylate) 1.949 (3) and 2.113 (3) Å.

Comment

Oxalate is an important organic ligand, which is coordinated to many metals in complexes exhibiting different structural characteristics, such as $\left[\mathrm{Cu}_{2}(\mu \text {-ox })_{2}(\mu\right.$-pyz)(pyz) $\left.)_{2}\right]_{n}$ (pyz is pyrazine; Kitagawa et al., 1995), $[\mathrm{Cu}-$ $\left.(\mathrm{en})_{2}\right]\left[\mathrm{Cu}(\mathrm{ox})_{2}\right]$ (Oshio \& Nagashima, 1992), $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2^{-}}$ $\left[(\mathrm{VO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{VOCl}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ (Salta et al., 1996), etc. In order to further understand the structure of the complexes containing the oxalate ligand, we have decided to turn our attention to molybdenum(VI) oxalate complexes. This is because molybdenum in the V and VI oxidation states forms a considerable number of oxo complexes (Cruywagen et al., 1986). Few of these have been unequivocally characterized structurally, but it is important to do so in many cases. The point of particular interest in such compounds is the different structural arrangements which have an effect on intramolecular bond distances and angles. We report here an infinite-chain molybdenum-oxalate compound, (1).

It was found that $\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (2), which was structurally characterized by X -ray diffraction (Cotton et al., 1964), and (1) were considered to have a similar coordination mode for molybdenum. Structure analysis shows that in the anion of (1), the various $\mathrm{Mo}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Mo}-\mathrm{O}$ bond angles vary considerably. The six oxygen ligands of each Mo atom are of three types, namely, terminal, bridging and oxalate, with respective $\mathrm{Mo}-\mathrm{O}$ bond lengths of 1.560 (3)-1.739 (3), 2.046 (4)-2.410(4) and 1.949 (3)$2.113(3) \AA$, and angles ranging from 164.01 (14) to $76.85(14)^{\circ}$. A comparison of (1) with (2) showed that one Mo-O(terminal) bond distance [1.560 (3) \AA] in (1) is shorter than that in (2) (average $1.69 \AA$), however, another Mo-O(terminal) bond distance $[1.739$ (3) \AA] is longer than that in (2). Therefore, the Mo-O (bridging) bond distances of (1) are longer than in (2) (1.876 \AA), and their corresponding angles are considerably differ-
ent, in particular, the $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ angle $\left[156.2(2)^{\circ}\right]$ in (1) is bent, whereas that in (2) is linear. Both K1 and K 2 are nine-coordinate, with bond lengths ranging from 2.532 (5) to 3.301 (5) \AA. The water molecule is coordinated to two K atoms, with the $\mathrm{OW} \cdot \mathrm{K}$ distances ranging from 2.532 (5) to 3.014 (5) \AA. In addition, the shorter Mo- O 7 bond distance is probably due to the fact that the $\mathrm{K} \cdots \mathrm{O}$ 7 interaction is weaker than the $\mathrm{K} \cdots \mathrm{O} 4$ interaction, leading to the $\mathrm{Mo}-\mathrm{O} 7$ bond being stronger than the $\mathrm{Mo}-\mathrm{O} 4$ bond, e.g. $\mathrm{K} 2 \cdots \mathrm{O} 4^{\text {iv }} 2.611$ (4), $\mathrm{K} 2 \cdots \mathrm{O} 7^{\text {iv }}$ 3.288 (4) A etc. [symmetry code: (iv) $x-1, y, z$].

Fig. 1. The structure of the $\left[\mathrm{MoO}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{2-}$ infinite chain, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z ;$ (viii) $x, y, 1+z$.]

Experimental

The title compound was separated as light-red prismatic crystals from a reaction system of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoS}_{4} / \mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (molar ratio 1:2), which was used in an attempt to prepare a bridging sulfur-molybdenum-oxalate compound in a solution of water and MeOH at room temperature under a nitrogen atmosphere.

Crystal data

$\mathrm{K}_{2}\left[\mathrm{MoO}_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=328.18$
Monoclinic
$P 2_{1} / c$
$a=7.5130(10) \AA$
$b=12.740(2) \AA$
$c=8.6800(10) \AA$
$\beta=95.67(2)^{\circ}$
$V=826.7(2) \AA^{3}$
$Z=4$
$D_{x}=2.637 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 50 reflections
$\theta=2.72-28.97^{\circ}$
$\mu=2.605 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.36 \times 0.22 \times 0.08 \mathrm{~mm}$ Light red

$$
\begin{aligned}
& R_{\text {int }}=0.035 \\
& \theta_{\max }=28.97^{\circ}
\end{aligned}
$$

Absorption correction:
empirical via ψ scans
(North et al., 1968)
$T_{\text {min }}=0.564, T_{\text {max }}=0.812$
2047 measured reflections
1454 independent reflections
1361 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.036$
$n \cdot R\left(F^{2}\right)=0.103$
$S=1.123$
1454 reflections
119 parameters
H atoms not located
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0673 P)^{2}\right.$
$+1.6151 P]$
where $P=\left(F_{o}^{2}+2 F_{C}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.039$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 1$
$l=-1 \rightarrow 8$
3 standard reflections every 97 reflections intensity decay: 1.5%

Table 1. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$\mathrm{Mo}-\mathrm{O} 7$	1.560 (3)	KI...O2'	3.104 (4)
$\mathrm{Mo}-\mathrm{O} 4$	1.739 (3)	$\mathrm{Kl} \cdot \mathrm{O}{ }^{1}$	3.109 (5)
$\mathrm{Mo}-\mathrm{O} 3$	1.949 (3)	K1...O4"	3.301 (4)
$\mathrm{Mo}-\mathrm{Ol}$	2.046 (4)	$\mathrm{K} 2 \cdots \mathrm{O} 4^{\prime \prime}$	2.611 (4)
$\mathrm{Mo}-\mathrm{O} 2$	2.113 (3)	K2.. $\mathrm{OS}^{\text {1 }}$	2.639 (4)
Mo-Ol'	2.410 (4)	K2. . $05{ }^{\text {' }}$	2.862 (4)
K1...OW	2.532 (5)	K2 . . O6	2.865 (5)
K1..O4	2.648 (3)	$\mathrm{K} 2 \cdots \mathrm{O} 7^{11}$	2.888 (4)
$\mathrm{Kl} \cdots \mathrm{Ol}^{\text {j }}$	2.804 (4)	K2..OW	3.014 (5)
$\mathrm{KI} \cdot \cdots \mathrm{O}$	2.826 (3)	K2...O6'	3.157 (6)
K1...O7 ${ }^{\text {¹1 }}$	2.935 (4)	$\mathrm{K} 2 \cdots \mathrm{O} 7^{\prime \prime}$	3.288 (4)
$\mathrm{KI} \cdots \mathrm{O} 2^{\prime \prime \prime}$	2.973 (4)		
$\mathrm{O} 7-\mathrm{Mo}-\mathrm{O} 4$	109.3 (2)	$\mathrm{O} 3-\mathrm{Mo}-\mathrm{O} 2$	79.51 (12)
$\mathrm{O} 7-\mathrm{Mo}-\mathrm{O} 3$	156.2 (2)	$\mathrm{Ol}-\mathrm{Mo}-\mathrm{O} 2$	86.32 (14)
$\mathrm{O} 4-\mathrm{Mo}-\mathrm{O} 3$	82.15 (14)	$\mathrm{O} 7-\mathrm{Mo}-\mathrm{Ol}{ }^{\prime}$	82.7 (2)
$\mathrm{O7}-\mathrm{Mo}-\mathrm{OI}$	102.2 (2)	$\mathrm{O} 4-\mathrm{Mo}-\mathrm{Ol}^{1}$	87.88 (15)
$\mathrm{O} 4-\mathrm{Mo}-\mathrm{Ol}$	104.5 (2)	$\mathrm{O} 3-\mathrm{Mo}-\mathrm{Ol}^{\prime}$	76.85 (14)
$\mathrm{O} 3-\mathrm{Mo}-\mathrm{Ol}$	94.55 (15)	$\mathrm{Ol}-\mathrm{Mo}-\mathrm{Ol}^{1}$	164.01 (14)
$\mathrm{O} 7-\mathrm{Mo}-\mathrm{O} 2$	84.8 (2)	$\mathrm{O} 2-\mathrm{Mo}-\mathrm{Ol}^{1}$	78.93 (1.3)
$\mathrm{O} 4-\mathrm{Mo}-\mathrm{O} 2$	159.41 (14)	$\mathrm{Mo}-\mathrm{Ol}-\mathrm{Mo}^{\text {'1 }}$	156.2 (2)

Symmetry codes: (i) $x, \frac{3}{2}-y, \frac{1}{2}+\pi$; (ii) $1-x, 2-y,-z$ (iii) $1-x, \frac{1}{2}+$ $y, \frac{1}{2}-z:(\mathrm{iv}) x-1, y, z:(\mathrm{v})-x, \frac{1}{2}+y, \frac{1}{2}-z:(\mathrm{vi}) x-1, \frac{3}{2}-y, \frac{1}{2}+z$ (vii) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. The non- H atoms were refined anisotropically to convergence.

Data collection: $P 4$ (Siemens, 1994a). Cell refinement: P4 and XSCANS (Siemens, 1994b). Data reduction: XSCANS. Programı(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

This work was supported by grants from the Natural Science Foundation of China and the State Key Laboratory of Structural Chemistry.

[^0]Siemens $P 4$ diffractometer ω scans
$\Delta \rho_{\text {max }}=1.196 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.953 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0123 (13)

Scattering factors from International Tables for Crystallography (Vol. C)

References

Cotton, F. A., Morehouse, S. M. \& Wood, J. S. (1964). Inorg. Chem. 3, 1603-1608.
Cruywagen, J. J., Heyns, J. \& Van de Water, R. F. (1986). J. Chem. Soc. Dalton Trans. pp. 1857-1862.
Kitagawa, S., Okubo, T., Kawata, S., Kondo, M., Katada, M. \& Kobayayaski, H. (1995). Inorg. Chem. 34, 4790-4796.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Oshio, H. \& Nagashima, U. (1992). Inorg. Chem. 31, 3295-3301.
Salta, J., O’Connor, C. J., Li, S. \& Zubieta, J. (1996). Inorg. Chim. Acta, 250, 303-310.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1990). SHELXTL-Plus. Structure Determination Sofiware Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). P4. Program for Data Collection. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XSCANS. X-ray Single Crystal Analysis System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 523-531

> Coordination complexes of triphenyltin coumarin-3-carboxylate with O-donor ligands: (coumarin-3-carboxylato)triphenyltin- $L(L=$ ethanol, diphenylcyclopropenone and quinoline N-oxide) and bis[(coumarin3-carboxylato)triphenyltin]- $L(L=$ triphenylphosphine oxide and triphenylarsine oxide)

Seik Weng Ng
Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: hlnswen@cc.um.edu.my

(Received 29 July 1998; accepted 13 November 1998)

Abstract

The Sn atoms in (coumarin-3-carboxylato- O^{3})(ethanolO) triphenyltin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\right.$], (cou-marin-3-carboxylato- O^{3})(1,2-diphenylcyclopropenoneO)triphenyltin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}\right)\right]$, and (coumarin-3-carboxylato- O^{3}) triphenyl (quinoline N -oxide- O)tin, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}\right)\right.$, are fivecoordinated with trans $-\mathrm{C}_{3} \mathrm{SnO}_{2}$ trigonal-bipyramidal geometries. In the ethanol adduct, a hydrogen bond links adjacent molecules into a helical chain along the b axis. The molecular 1,2-diphenylcyclopropen-

one and quinoline N-oxide adducts were synthesized by condensing triphenyltin hydroxide with coumarin-3-carboxylic acid in ethanol in the presence of an equimolar quantity of the O-donor ligand. With triphenylphosphine oxide as the Lewis base, the condensation yields μ-(coumarin-3-carboxylato) $-1 \kappa O^{3}: 2 \kappa O^{3^{\prime}}$ -(coumarin-3-carboxylato)- $1 \kappa O^{3}$-hexaphenyl- $1 \kappa^{3} \mathrm{C}, 2 \kappa^{3} \mathrm{C}$ (triphenylphosphine oxide) $-2 \kappa O$-ditin, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left\{\mathrm{PO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$; this dinuclear complex consists of a dimeric carboxylate-bridged bis[(coumarin3 -carboxylato)triphenyltin] entity that is coordinated by the phosphine oxide. μ-(Coumarin-3-carboxylato) $-1 \kappa O^{3}: 2 \kappa O^{3^{\prime}}$-(coumarin-3-carboxylato)-1 κO^{3}-hexa-phenyl- $1 \kappa^{3} C, 2 \kappa^{3} C$-(triphenylarsine oxide) $-2 \kappa O$-ditin, $\left[\mathrm{Sn}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left\{\mathrm{AsO}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right]$, is isomorphous with the phosphine oxide. The carboxylate bridge is longer than the dative $\mathrm{Sn}-\mathrm{O}_{L}$ bond in both dinuclear compounds.

Comment

Unlike triorganotin halides and pseudohalides that yield a plethora of $1 / 1$ adducts with 'pointed' (Ng et al., 1982) O-donor ligands, triorganotin carboxylates rarely furnish such molecular complexes because the carboxylates are themselves either only weak Lewis acids (as with triphenyltin arylcarboxylates) or are already saturated with respect to coordination through carboxylate bridging (as with triphenyltin alkanoates) (Ng et al., 1988). Complexes of triphenyltin carboxylates with water (Kumar Das et al., 1977; Ng, 1996; Ng \& Kumar Das, 1995a; Ng et al., 1996) and methanol (Alcock \& Roe, 1989) have been isolated, albeit serendipitously; these adducts are held together in the crystal structure by hydrogen bonds involving the solvate molecules. [$\operatorname{Bis}(N, N$-dimethylthiocarbamoylthio)acetato]triphenyltin is an unusual example of a triorganotin carboxylate showing Lewis acidity; the compound forms $1 / 1$ complexes with hexamethylphosphoramide, triphenylphosphine oxide ($\mathrm{Ng}, 1995 b$) and quinoline N oxide ($\mathrm{Ng}, 1997$). The Lewis acidity of this carboxylate can be attributed to the electron-withdrawing capacity of the dimethylthiocarbamoylthiolyl units in the anionic group; in fact, the compound is so Lewis acidic that even ethanol can coordinate to it ($\mathrm{Ng} \&$ Kumar Das, 1991). On the other hand, bis(triphenyltin) succinate, which yields isolable adducts with several O-donor ligands ($\mathrm{Ng}, 1998 a$), represents an anomaly, as the succinato group is not normally considered a strongly basic entity.

Although the coumarin-3-carboxylate anion does not appear to be able to endow the triphenyltin derivative with enhanced Lewis acidity, triphenyltin coumarin-3carboxylate accepts a coumarin-3-carboxylate anion to form the bis(coumarin-3-carboxylato)triphenylstannate anion, which has been structurally characterized as its tetramethylammonium salt ($\mathrm{Ng} \&$ Kumar Das, 1997b).

[^1]Acta Crystallographica Section C ISSN 0108-2701 © 1999

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1220). Services for accessing these data are described at the back of the journal

[^1]: © 1999 International Union of Crystallography
 Printed in Great Britain - all rights reserved

